
m209 Documentation
Release 0.1

Brian Neal

July 23, 2013

CONTENTS

1 Introduction 3

2 Documentation 5
2.1 Tutorials . 5
2.2 Command-line Reference . 8
2.3 Library Reference . 12

3 Requirements 21

4 Installation 23

5 Support & Source 25

6 References 27

7 Indices and tables 29

i

ii

m209 Documentation, Release 0.1

Author Brian Neal <bgneal@gmail.com>

Version 0.1

Date July 23, 2013

Home Page https://bitbucket.org/bgneal/m209/

License MIT License (see LICENSE.txt)

Documentation http://m209.readthedocs.org/

Support https://bitbucket.org/bgneal/m209/issues

CONTENTS 1

mailto:bgneal@gmail.com
https://bitbucket.org/bgneal/m209/
http://m209.readthedocs.org/
https://bitbucket.org/bgneal/m209/issues

m209 Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The M-209 is a mechanical cipher machine used by the US military during World War II and up to the Korean War.
The M-209 is also known as the CSP-1500 by the US Navy. The M-209 is an example of a Hagelin device, a family
of mechanical cipher machines created by Swedish inventor Boris Hagelin, where it is known as the C-38.

m209 is a complete M-209 simulation library and command-line application written in Python 3. m209 is historically
accurate, meaning that it can exchange messages with an actual M-209 cipher machine.

It is hoped that this library will be useful to M-209 enthusiasts, historians, and students interested in cryptography.

m209 strives to be Pythonic, easy to use, and comes with both unit tests and documentation. m209 is a library for
building applications for encrypting and decrypting M-209 messages. m209 also ships with a simple command-line
application that can encrypt & decrypt messages for scripting and experimentation.

3

http://en.wikipedia.org/wiki/M-209
http://en.wikipedia.org/wiki/Boris_Hagelin
http://en.wikipedia.org/wiki/M-209

m209 Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER

TWO

DOCUMENTATION

Contents:

2.1 Tutorials

2.1.1 Command-line Tutorial

In order for two parties to exchange M-209 messages, each must set up their device in exactly the same manner. This
was accomplished by publishing key lists in code books which were distributed to end users. A code book instructed
users on what key list to use on any given day in a given month. Each key list detailed the numerous wheel pin and
lug settings that needed to be made for a given day. Because there are so many settings, the m209 utility allows users
to store key lists in a key file for convenience. So let us first create a key file that holds 30 key lists:

$ m209 keygen -n 30

This command randomly creates 30 key lists and stores them in a file called m209keys.cfg by default. We did not
specify a starting key list indicator, so 30 random ones were chosen. The first 13 lines of our new key file are displayed
below:

$ head -n 13 m209keys.cfg
[AB]
lugs = 0-4*4 0-5*6 1-0*10 2-0*2 3-0 3-5*2 3-6 4-5
wheel1 = BDFGIKRSTUWX
wheel2 = BCEJKLORSUX
wheel3 = CFHJKLMQSTU
wheel4 = ABCDHIJMOPRTU
wheel5 = BCEFINPS
wheel6 = ACDEHJN
check = GZWUU SFYQN NFAKK FXSEN FAFMF B

[AK]
lugs = 0-4*2 0-5*9 0-6 1-0*3 1-2 1-5 1-6*2 3-0*8
wheel1 = ABDEFHIJMQSUXZ

Note: If you are following along at home, you’ll probably get different output than what is shown here. This is
because the key lists are generated at random, and it is very unlikely that your key list will match mine!

Here we can see that the first key list in our file has the indicator AB (shown in square brackets), and we can see
the settings for the lugs and six wheels. This notation is explained later (see Key list file format). Also included is a
so-called check string. Because there are so many settings, it is quite error-prone to set up an M-209. This check string

5

m209 Documentation, Release 0.1

allows the operator to verify their work. After configuring the M-209 with the given settings, the operator can set the
six key wheels to AAAAAA, then encipher the letter A 26 times. If the message that appears on the paper tape matches
the check string, the operator knows the machine is set up correctly for the day.

After the key list AB, the key list AK starts, and so on for all 30 key lists.

Now that we have created a key file, we can encrypt our first message. The m209 utility has many options to let
you have fine control over the various encryption parameters. These are explained in detail later. If you omit these
parameters they are simply chosen at random. Here is the simplest example of encrypting a message:

$ m209 encrypt -t "THE PIZZA HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP"
IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB

What just happened here? Since we did not specify a key file, the default m209keys.cfg was used. Since we did
not specify a key list indicator, one was chosen randomly from the key file. Other encryption parameters, explained
later, were also randomly chosen. Next, the message given on the command-line was encrypted using the standard US
Army procedure described in References (see [5] and [7]). This resulted in the encrypted message, which is displayed
in 5-letter groups. Notice that the first and last 2 groups are identical. These are special indicators that tell the receiver
how to decrypt the message. In particular note that the last 2 letters in the second and last groups are MB. This is
the key list indicator and tells the receiver what key list was used. The remaining groups in the middle make up the
encrypted message.

Astute M-209 enthusiasts will note that our message included spaces. Actual M-209 units only allow the input of the
letters A through Z. Whenever a space was needed, the operator inserted the letter Z. The m209 utility automatically
performs this substitution for convenience.

Let’s suppose our message was then sent to our recipient, either by courier, Morse code over radio, or in the modern
age, email or even Twitter. In order for our receiver to decrypt our message they must also have the identical key list
named MB. We will assume for now that our key file, m209keys.cfg was sent to our receiver earlier in some secure
manner. The receiver then issues this command:

$ m209 decrypt -t "IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB"
THE PI A HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP

Here again, since no key file was explicitly specified, the file m209keys.cfg was used. The file was searched for
the key list MB. Then the standard Army procedure was followed, making use of the indicator groups to decrypt the
message, which is displayed as output.

But wait, what happened to our Pizza? Why are the Z‘s missing? This is how an actual M-209 operates. Recall that
an operator must substitute a letter Z whenever a space is needed. The M-209 helpfully replaces the letter Z in the
decrypt output with a space as an aid to the operator. As a side effect, legitimate uses of the letter Z are blanked out.
Usually it is clear from context what has happened, and the operator has to put the Z‘s back into the message before
passing it up the chain of command.

It may also happen that the original message did not fit perfectly into an even number of 5-letter groups. In that case
the encrypted message would be padded with X characters according to procedure. Upon decrypt, these X characters
would appear as garbage characters on the end of the message. The receiving operator would simply ignore these
letters. Note that our message did not exhibit this behavior.

This is all you need to know to start creating your own M-209 messages! For more details, consult the Command-line
Reference.

2.1.2 Library Tutorial

Here is one way to perform the encrypt and decrypt operations from the command-line tutorial, above. In order to
produce the same output, we explicitly specify the encryption parameters: the key list, the external message indicator,
and the system indicator. These parameters are explained in References [5] & [7].

6 Chapter 2. Documentation

m209 Documentation, Release 0.1

"""Example of how to perform an encrypt operation using the standard
procedure. Assumes a key file named m209keys.cfg exists in the current directory
and contains the key list with indicator MB.

"""
from m209.procedure import StdProcedure
from m209.keylist.config import read_key_list

key_list = read_key_list(’m209keys.cfg’, ’MB’)
if key_list:

proc = StdProcedure(key_list=key_list)
plaintext = "THE PIZZA HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP"
msg = proc.encrypt(plaintext, spaces=True, ext_msg_ind=’PDUFHL’, sys_ind=’I’)
print(msg)

else:
print("Key list MB not found")

This program outputs:

IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB

A decrypt is just a bit more complicated. After constructing a StdProcedure object, you hand it the encrypted
message to analyze. The procedure object examines the groups in the message and extracts all the indicators. These
are returned as a DecryptParams named tuple which indicates, amongst other things, what key list is required. It
is then up to you to obtain this key list somehow. Here we use the read_key_list() function to do so. After
installing the key list into the procedure object with set_key_list(), you can finally call decrypt():

"""Example of how to perform a decrypt operation using the standard
procedure. Assumes a key file named m209keys.cfg exists in the current directory
and contains the key list with indicator MB.

"""
from m209.procedure import StdProcedure
from m209.keylist.config import read_key_list

msg = (’IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC’
’ GSPQX IIPDU FHLMB’)

proc = StdProcedure()
params = proc.set_decrypt_message(msg)
key_list = read_key_list(’m209keys.cfg’, params.key_list_ind)
if key_list:

proc.set_key_list(key_list)
plaintext = proc.decrypt()
print(plaintext)

else:
print("Key list ’{}’ not found".format(params.key_list_ind))

This program prints:

THE PI A HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP

2.1. Tutorials 7

m209 Documentation, Release 0.1

2.2 Command-line Reference

2.2.1 Overview

The m209 command-line utility performs three functions:

• Creates key list files

• Encrypts text, either given on the command line or read from a file

• Decrypts text, either given on the command line or read from a file

These functions are implemented as sub-commands. To see the list of sub-commands and options common to all
sub-commands, use the -h or --help option:

$ m209 --help
usage: m209 [-h] [-l {debug,info,warning,error,critical}]

{encrypt,enc,decrypt,dec,keygen,key} ...

M-209 simulator and utility program

optional arguments:
-h, --help show this help message and exit
-l {debug,info,warning,error,critical}, --log {debug,info,warning,error,critical}

set log level [default: warning]

list of commands:
type m209 {command} -h for help on {command}

{encrypt,enc,decrypt,dec,keygen,key}
encrypt (enc) encrypt text from file or command-line
decrypt (dec) decrypt text from file or command-line
keygen (key) generate key list

The -l / --log options control the verbosity of output. Currently only the keygen sub-command makes use of this
option.

Each sub-command has an alias for those who prefer shorter commands.

2.2.2 Keygen sub-command

keygen, or key for short, is the sub-command that pseudo-randomly creates key list files for use by the encrypt
and decrypt sub-commands, as well as by the m209 library routines.

Help on the keygen sub-command can be obtained with the following invocation:

$ m209 keygen --help
usage: m209 keygen [-h] [-z KEY_FILE] [-o] [-s XX] [-n NUMBER]

Generate key list file

optional arguments:
-h, --help show this help message and exit
-z KEY_FILE, --key-file KEY_FILE

path to key list file [default: m209keys.cfg]
-o, --overwrite overwrite key list file if it exists
-s XX, --start XX starting indicator; if omitted, random indicators are

used

8 Chapter 2. Documentation

m209 Documentation, Release 0.1

-n NUMBER, --number NUMBER
number of key lists to generate [default: 1]

The options for keygen are described below.

-z or --key-file This option names the key list file. If not supplied, this defaults to m209keys.cfg. Note that
the other sub-commands also have this option, and they too use the same default value.

-o or --overwrite This switch must be present if the key list file already exists. It provides confirmation that the
user wants to overwrite an existing file. If the key list file already exists, and this option is not supplied, this
sub-command will exit with an error message and the original key list file will be unchanged.

-s or --start This option sets the starting indicator for the key list file. Key list indicators are two letters in the
range AA to ZZ. For example, keygen can be told to create 3 key lists, starting with indicator AA. In this case
the key lists AA, AB, and AC would be written to the file. If this parameter is omitted, keygen picks indicators
at random. Key list indicators simply name the key list, and are placed in the leading and trailing groups of
encrypted messages to tell the receiver which key list was used to create the message. Both sender and receiver
must have the same key list (name and contents) to communicate.

-n or --number This option specifies the number of key lists to generate. The default value is 1.

Note: The algorithm the keygen sub-command uses to generate key lists is based on the actual US Army procedure
taken from the 1944 manual. This procedure is somewhat loosely specified and a lot is left up to the soldier creating
the key list. The keygen algorithm is ad-hoc and uses simple heuristics and random numbers to make decisions.
Occasionally this algorithm may fail to generate a key list that meets the final criteria defined in the manual. If this
happens an error message will be displayed and no key list file will be created. It is suggested to simply run the
command again as it is not likely to happen twice in a row.

Keygen examples

To generate 30 key lists in the default key list file (m209keys.cfg) with random indicators, and overwriting the key
list file if it exists:

$ m209 keygen -o -n 30
$ m209 key --overwrite --number=30

To generate 5 key lists that sequentially start with the indicator BN in the key list file
m209/keys/november/keys.cfg:

$ m209 keygen -z m209/keys/november/keys.cfg -s BN -n 5

2.2.3 Encrypt sub-command

encrypt, or enc, is the sub-command used to encrypt text. To get help on the encrypt command, type the
following:

$ m209 encrypt -h
usage: m209 encrypt [-h] [-z KEY_FILE] [-f FILE] [-t TEXT] [-k XX] [-e ABCDEF]

[-s S]

Encrypt text from a file or command-line

optional arguments:
-h, --help show this help message and exit
-z KEY_FILE, --key-file KEY_FILE

2.2. Command-line Reference 9

m209 Documentation, Release 0.1

path to key list file [default: m209keys.cfg]
-f FILE, --file FILE path to plaintext file or - for stdin
-t TEXT, --text TEXT text string to encrypt
-k XX, --key-list-ind XX

2-letter key list indicator; if omitted a random one
is used

-e ABCDEF, --ext-ind ABCDEF
6-letter external message indicator; if omitted a
random one is used

-s S, --sys-ind S 1-letter system indicator; if omitted a random one is
used

Either the -f/--file or -t/--text arguments must be supplied

The options to the encrypt command are described below.

-z or --key-file This option names the key list file. If not given, the default of m209keys.cfg is used.

-f or --file This option specifies the file that contains the text to encrypt. If the filename is given as - then input
is read directly from stdin. Note that either this option or the -t option must be specified, but not both.

-t or --text This option specifies the text to encrypt on the command-line. Depending upon your system, you’ll
probably have to quote or escape your text. Note that you must either specify this option or the -f option, but
not both.

-k or --key-list-ind This option specifies the two-letter key list indicator to use. Valid values range from AA
to ZZ. The key list with this indicator must be in the key list file given by the -z option. If this option is omitted,
a key list from the key list file is chosen at random.

-e or --ext-ind This option specifies the six-letter external message indicator, which is an encryption parameter
as explained in the 1944 manual (see References [5] & [7]). Each letter must exist on the key wheels from left
to right. If this option is omitted, an external message indicator is chosen at random.

-s or --sys-ind This option specifies the one-letter system indicator, which is an encryption parameter as ex-
plained in the 1944 manual (see References [5] & [7]). This must be a letter from A to Z. If not given, one is
chosen at random.

Note: An actual M-209 can only accept the letters A-Z. When using an actual M-209, space characters must be input
as the letter Z. Numbers must typically be spelled out as words or some other agreed-upon convention. Likewise with
punctuation. To make encryption more convenient, the m209 program will accept spaces and automatically convert
them to the letter Z. Lowercase letters will automatically be converted to uppercase. All other characters will be
silently dropped from the input. This applies to both text read on the command-line with the -t option and text read
from files (-f).

Encrypt examples

To encrypt a simple string on the command-line using the default key file and random encryption parameters:

$ m209 encrypt -t "Rendezvous at zero seven thirty"
BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY

To save the encrypted text to a file:

$ m209 encrypt -t "Rendezvous at zero seven thirty" > secret.txt

To read the contents of a file and encrypt it, saving it to a new file:

10 Chapter 2. Documentation

m209 Documentation, Release 0.1

$ m209 enc -f message.txt > secret.txt

To explicitly specify encryption parameters, and read text from stdin:

$ cat message.txt | m209 enc --file=- -k SU -e ZQGMFO -s A

2.2.4 Decrypt sub-command

decrypt, or dec, is the sub-command used to decrypt text. To get help on the decrypt command, type the
following:

$ m209 decrypt --help
usage: m209 decrypt [-h] [-z KEY_FILE] [-f FILE] [-t TEXT]

Decrypt text from a file or command-line

optional arguments:
-h, --help show this help message and exit
-z KEY_FILE, --key-file KEY_FILE

path to key list file [default: m209keys.cfg]
-f FILE, --file FILE path to ciphertext file or - for stdin
-t TEXT, --text TEXT text string to decrypt

Either the -f/--file or -t/--text arguments must be supplied

The options to the decrypt command are described below.

-z or --key-file This option names the key list file. If not given, the default of m209keys.cfg is used.

-t or --file This option specifies the file that contains the text to decrypt. If the filename is given as - then input
is read directly from stdin. Note that either this option or the -t option must be specified, but not both.

-t or --text This option specifies the text to decrypt on the command-line. Depending upon your system, you’ll
probably have to quote or escape your text. Note that you must either specify this option or the -f option, but
not both.

Note: The first and last 2 groups of an encrypted message contain the information needed to decrypt the message:
the system indicator, the external message indicator, and the key list indicator. If the key list file given to the decrypt
command does not contain the key list used to encrypt the message, then the message cannot be decrypted and an error
message will be displayed.

Decrypt examples

To decrypt a simple string on the command-line using the default key file:

$ m209 decrypt -t "BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY"
RENDE VOUS AT ERO SEVEN THIRTYXSJQ

To save the decrypted text to a file:

$ m209 decrypt -t "BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY" > msg.txt

To read the contents of a file and decrypt it, saving it to a new file:

2.2. Command-line Reference 11

m209 Documentation, Release 0.1

$ m209 dec -f secret.txt > msg.txt

To decrypt from stdin:

$ cat secret.txt | m209 dec -f -
RENDE VOUS AT ERO SEVEN THIRTYXSJQ

Note: In this example, the last group of the encrypted message only has one letter. It was padded out to five letters
with X‘s by the encryption process, and thus four “garbage” letters appear at the end in the decrypted output.

Note also that the Z in RENDEZVOUS and ZERO were converted to spaces by the decrypt process.

In both of these cases the operator would have to “fix up” the message before passing it up the chain of command.

2.3 Library Reference

This section of the documentation is aimed at developers who wish to use the m209 library as part of their own
application. This documentation covers the major classes and functions.

2.3.1 Exceptions

The m209 library defines an exception hierarchy, rooted at the M209Error class. These exceptions are briefly
described below.

class m209.M209Error
The base exception in the hierarchy. It inherits from the built in Python Exception class.

class m209.drum.DrumError
Inherits from M209Error. This exception is used to report drum related errors.

class m209.key_wheel.KeyWheelError
Inherits from M209Error. This exception is used to report key wheel related errors.

class m209.keylist.generate.KeyListGenError
Inherits from M209Error. This is public exception, used to report errors during the key list generation process.

class m209.procedure.ProcedureError
Inherits from M209Error. This is public exception, used to report errors during StdProcedure operations.

2.3.2 Key lists

Key lists are represented as a named tuple called KeyList.

class m209.keylist.KeyList(indicator, lugs, pin_list, letter_check)
As a named tuple, KeyList has the following attributes:

•indicator - the string name for the KeyList; must be 2 letters in the range AA - ZZ

•lugs - a string representing the drum lug settings; see below

•pin_list - a list of six strings which represent key wheel pin settings; see below

•letter_check - a string representing the letter check used to verify operator settings; if unknown this
can be None or an empty string

12 Chapter 2. Documentation

m209 Documentation, Release 0.1

Lug settings format

Drum lug settings are often conveniently represented as strings consisting of at most 27 whitespace-separated pairs of
integers separated by dashes. For example:

lugs = ’1-0 2-0 2-0 0-3 0-5 0-5 0-5 0-6 2-4 3-6’

Each integer pair must be in the form m-nwhere m & n are integers between 0 and 6, inclusive. Each integer represents
a lug position where 0 is a neutral position, and 1-6 correspond to key wheel positions. If m & n are both non-zero,
they cannot be equal.

If a string has less than 27 pairs, it is assumed all remaining bars have both lugs in the neutral positions, i.e. 0-0.

The order of the pairs within the string does not matter.

To reduce typing and to aid in readability, an alternate shortcut notation is supported:

lugs = ’1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6’

Any pair that is suffixed by *k, where k is a positive integer, means there are k copies of the preceeding lug pair
combination. For example, these two strings describe identical drum configurations:

lugs1 = ’2-4 2-4 2-4 0-1 0-1’
lugs2 = ’2-4*3 0-1*2’

Key wheel pin settings

Key wheel pin settings are represented as iterables of letters whose pins are slid to the “effective” position (to the
right). Letters not appearing in this sequence are considered to be in the “ineffective” position (to the left). If None or
empty, all pins are set to be ineffective.

Examples:

all_ineffective = ’’
wheel1 = ’ABDEFHIJMQSUXZ’
wheel2 = ’EINPQRTVXZ’
wheel3 = ’DEFGIKNOSUX’
wheel4 = ’BFGJKRS’
wheel5 = ’ABCDFGHIJMPS’
wheel6 = ’ADEFHIJKN’

Key list example

An example of using the KeyList is:

from m209.keylist import KeyList

key_list1 = KeyList(
indicator=’AA’,
lugs=’0-4 0-5*4 0-6*6 1-0*5 1-2 1-5*4 3-0*3 3-4 3-6 5-6’,
pin_list=[

’FGIKOPRSUVWYZ’,
’DFGKLMOTUY’,
’ADEFGIORTUVX’,
’ACFGHILMRSU’,
’BCDEFJKLPS’,
’EFGHIJLMNP’

2.3. Library Reference 13

m209 Documentation, Release 0.1

],
letter_check=’QLRRN TPTFU TRPTN MWQTV JLIJE J’)

Key list file I/O

Key lists can be stored in files in config file (“INI”) style format using functions found in the
m209.keylist.config module.

m209.keylist.config.read_key_list(fname[, indicator=None])
Reads key list information from the file given by fname.

Searches the config file for the key list with the given indicator. If found, returns a KeyList object. Returns
None if not found.

If indicator is None, a key list is chosen from the file at random.

m209.keylist.config.write(fname, key_lists)
Writes the key lists to the file named fname in config file format.

key_lists must be an iterable of KeyList objects.

Key list file format

An example key list file in config file format is presented below. The label for each section of the file is the key list
indicator.

[CA]
lugs = 0-5*5 0-6*2 1-0*7 1-2 1-3*3 1-6 2-0 3-0*3 3-5*2 3-6 4-5
wheel1 = ABCDFGHJLOPRVWYZ
wheel2 = BCDEIJKPQSUVX
wheel3 = ACDGLNQRSTUV
wheel4 = FGHIJNQRSU
wheel5 = DEIJOQS
wheel6 = BCDEILMNOP
check = RGPRO RTYOO TWYSN GXTPF PNWIH P

[CD]
lugs = 0-4*4 0-5 1-0*7 1-2*2 1-4*3 2-0*2 2-4*2 2-6*2 3-0*4
wheel1 = AEFHIKMPQRSUVZ
wheel2 = ABFGHINORSUVZ
wheel3 = BDEHJKLMNOQRSU
wheel4 = CDEFGHJKMRU
wheel5 = FGHIJOQS
wheel6 = EGIJKLP
check = ZRLWL YRMIZ RZOPN UWMVZ DVGPM H

Generating key lists

The m209 library contains a function to pseudo-randomly generate a key list that is based on the procedure described
in the 1944 M-209 manual (see References [4]).

m209.keylist.generate.generate_key_list(indicator[, lug_selection=None[,
max_lug_attempts=MAX_LUG_ATTEMPTS[,
max_pin_attempts=MAX_PIN_ATTEMPTS]]])

The only required parameter is indicator, the two-letter indicator for the key list.

If successful, a KeyList object is returned.

14 Chapter 2. Documentation

m209 Documentation, Release 0.1

If a KeyList could not be generated a KeyListGenError exception is raised.

The algorithm is heuristic-based and makes random decisions based upon the 1944 procedure. The actual
procedure is loosely specified in the manual, and much is left up to the human operator. It is possible that the
algorithm cannot find a solution to meet the key list requirements specified in the manual, in which case it simply
tries again up to some set of limits. These limits can be tweaked using the optional parameters to the algorithm.
If no solution is found after exhausting the limits, a KeyListGenError is raised.

The optional parameters are:

•lug_selection - a list of 6 integers used to drive the lug settings portion of the algorithm. If not sup-
plied, a list of 6 integers is chosen from data tables that appear in the 1944 manual. For more information
on the requirements for these integers, see the manual.

•max_lug_attempts - the maximum number of times to attempt to create lug settings before giving up

•max_pin_attempts - the maximum number of times to attempt to generate key wheel pin settings
before giving up

2.3.3 M209 Class

Naturally, the m209 library includes a class that simulates a M-209 converter. The M209 class allows you to exper-
iment with all moving parts of an M-209, including encrypting and decrypting messages. Keep in mind there is a
higher level class, StdProcedure, that encapsulates all the steps of the standard encrypting and decrypting opera-
tions, including generating indicators and placing or removing them from messages. However if you need lower-level
access or you are inventing your own procedures, you would use the M209 class directly.

class m209.converter.M209([lugs=None[, pin_list=None]])
The M209 class takes the following optional arguments.

Parameters

• lugs – either a lug settings list or string as per set_drum_lugs()

• pin_list – a list of six strings each formatted as per Key wheel pin settings

M209 objects have the following attributes.

letter_count
This attribute represents the letter counter functionality. It is an integer that is incremented after
every letter is encrypted or decrypted. It may be set to any integer value or examined at any time.

M209 objects support the following methods.

set_pins(n, effective_pins)
Sets the pin settings on the specified key wheel n.

Parameters

• n – an integer between 0-5, inclusive. Key wheel 0 is the left-most wheel and wheel
5 is the right-most.

• effective_pins – an iterable of letters whose pins are slid to the “effective” position
(to the right). See Key wheel pin settings.

set_all_pins(pin_list)
Sets all key wheel pins according to the supplied pin list.

Parameters pin_list – must either be None or a 6-element list of strings where each string
element is as described in Key wheel pin settings. If None, all pins in all key wheels
are moved to the ineffective position.

2.3. Library Reference 15

m209 Documentation, Release 0.1

set_drum_lugs(lug_list)
Sets the drum lugs according to the given lug_list parameter.

If lug_list is None or empty, all lugs will be placed in neutral positions.

Otherwise, the lug_list can either be a list or a string.

If lug_list is passed a list, it must be a list of 1 or 2-tuple integers, where each integer is between
0-5, inclusive, and represents a 0-based key wheel position. The list can not be longer than 27
items. Only lug bars with lugs in non-neutral positions need be listed. Lug bars with one lug in a
non-neutral position are represented by a 1-tuple. Bars with 2 non-netural lugs are represented as a
2-tuple.

If lug_list is passed as a string, it is assumed to be in key list format as described in Lug settings
format.

Example:

m = M209()
m.set_drum_lugs(’1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6’)

or equivalently
m.set_drum_lugs([(0,), (1,), (1,), (2,), (4,), (4,), (4,), (5,), (1, 3), (2, 5)])

set_key_wheel(n, c)
Set key wheel n to the letter c.

Parameters

• n – an integer between 0-5 where key wheel 0 is the leftmost key wheel, and 5 is the
rightmost

• c – a 1-letter string valid for key wheel n

Raises KeyWheelError if c is not valid for wheel n

set_key_wheels(s)
Set the key wheels from left to right to the six letter string s.

Raises KeyWheelError if any letter in s is not valid for the corresponding key wheel

set_random_key_wheels()
Sets the six key wheels to random letters.

Returns a string of length six representing the new key wheel settings

get_settings()
Returns the current key settings.

Returns a named tuple of (lugs, pin_list) representing the current key settings.
lugs will be in string format.

encrypt(plaintext[, group=True[, spaces=True]])
Performs an encrypt operation on the given plaintext and returns the encrypted ciphertext as a string.

Parameters

• plaintext – the text string to encrypt

• group – if True, the ciphertext string will be grouped into 5-letter groups, separated
by spaces

• spaces – if True, space characters in the input plaintext will automatically be
treated as Z characters. Otherwise spaces in the plaintext will raise an M209Error.

16 Chapter 2. Documentation

m209 Documentation, Release 0.1

Returns the ciphertext as a string

decrypt(ciphertext[, spaces=True[, z_sub=True]])
Performs a decrypt operation on the given ciphertext and returns the decrypted plaintext as a string.

Parameters

• ciphertext – the text string to decyrpt

• spaces – if True, spaces will be allowed in the input ciphertext and ignored. Other-
wise space characters will raise an M209Error. This is useful if the input cipher-
text is in 5-letter groups, separated by spaces.

• z_sub – if True, Z characters in the output plaintext will be replaced by space
characters, just like an actual M-209.

Returns the plaintext as a string

Example:

>>> from m209.converter import M209
>>> m = M209()
>>> m.set_drum_lugs(’1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6’)
>>> pin_list = [
... ’FGIKOPRSUVWYZ’,
... ’DFGKLMOTUY’,
... ’ADEFGIORTUVX’,
... ’ACFGHILMRSU’,
... ’BCDEFJKLPS’,
... ’EFGHIJLMNP’
...]
>>> m.set_all_pins(pin_list)
>>> m.set_key_wheels(’FFEGJP’)
>>> ct = m.encrypt(’THE PIZZA HAS ARRIVED’)
>>> ct
’QBCHU WCCDI YFNCH LOZJY G’
>>> m.set_key_wheels(’FFEGJP’)
>>> pt = m.decrypt(ct)
>>> pt
’THE PI A HAS ARRIVED’

2.3.4 StdProcedure Class

The StdProcedure class encapsulates the encrypting and decrypting procedures outlined in References. In partic-
ular, see references [5] and [7]. This class takes care of the high level details of inserting various message indicators
into an encrypted message, and stripping them off during decrypt. These message indicators tell the recipient what
key list and initial key wheel settings to use when configuring their M-209 for decrypt.

class m209.procedure.StdProcedure([m_209=None[, key_list=None]])
Parameters

• m_209 – an instance of a M209 can optionally be provided to the procedure object. If None
the procedure object will create one for internal use.

• key_list – an instance of a KeyList can be provided if known ahead of time. Before an
encrypt or decrypt operation can be performed, a key list must be provided. This can be done
after object creation via set_key_list(). Note that the letter_check attribute of
the KeyList is not accessed by the procedure object, and can be None if not known.

2.3. Library Reference 17

m209 Documentation, Release 0.1

Before an encrypt() operation can be performed, a valid key list must be installed, either during procedure object
construction, or by the set_key_list() method.

Decrypt operations are performed in a 3-step process.

1. First, a call to the set_decrypt_message() method passes the message to be decrypted to the procedure
and establishes the parameters to be used for the actual decrypt() operation. These decrypt parameters are
returned to the caller.

2. The caller can examine the decrypt parameters to determine which key list must be installed before a successful
decrypt() operation can be carried out. The caller may call get_key_list() to examine the currently
installed key list. It is up to the caller to obtain the required key list and install it with set_key_list(), if
necessary. This is done by ensuring the installed key list indicator matches the key_list_ind field of the
decrypt parameters.

3. Finally decrypt() can be called. If the procedure does not have the key list necessary to decrypt the message,
a ProcedureError is raised.

StdProcedure objects have the following methods:

get_key_list()

Returns the currently installed KeyList object or None if one has not been set

set_key_list(key_list)
Establishes the KeyList to be used for future encrypt() and decrypt() operations

Parameters key_list – the new KeyList to use

encrypt(plaintext[, spaces=True[, ext_msg_ind=None[, sys_ind=None]]])
Encrypts a plaintext message using the installed KeyList and by following the standard procedure.
The encrypted text with the required message indicators are returned as a string.

Parameters

• plaintext – the input string to be encrypted

• spaces – if True, space characters in the input plaintext are allowed and will be
replaced with Z characters before encrypting

• ext_msg_ind – this is the external message indicator, which, if supplied, must be
a valid 6-letter string of key wheel settings. If not supplied, one will be generated
randomly.

• sys_ind – this is the system indicator, which must be a string of length 1 in the range
A - Z, inclusive. If None, one is chosen at random.

Returns the encrypted text with the required message indicators

Raises ProcedureError if the procedure does not have a KeyList or the input indicators
are invalid

set_decrypt_message(msg)
Prepare to decrypt the supplied message.

Parameters msg – the messsage to decrypt. The message can be grouped into 5-letter
groups separated by spaces or accepted without spaces.

Returns a DecryptParams named tuple to the caller (see below)

The DecryptParams named tuple has the following attributes:

•sys_ind - the system indicator

•ext_msg_ind - the external message indicator

18 Chapter 2. Documentation

m209 Documentation, Release 0.1

•key_list_ind - the key list indicator

•ciphertext - the cipher text with all indicators removed

The caller should ensure the procedure instance has the required KeyList before calling
decrypt(). The key_list_ind attribute of the returned DecryptParams named tuple iden-
tifies the key list that should be installed with set_key_list().

decrypt()
Decrypt the message set in a previous set_decrypt_message() call. The resulting plaintext
is returned as a string.

Returns the decrypted plaintext as a string

Raises ProcedureError if the procedure instance has not been previously configured with
the required KeyList via set_key_list()

Here is a simple interactive example of performing an encrypt operation. Here we choose a random key list from our
key list file, and use random indicators:

>>> from m209.keylist.config import read_key_list
>>> from m209.procedure import StdProcedure
>>>
>>> key_list = read_key_list(’m209keys.cfg’)
>>> proc = StdProcedure(key_list=key_list)
>>> ct = proc.encrypt(’ORDER THE PIZZA AT TWELVE HUNDRED HOURS’)
>>> ct
’YYGBM ENNHT VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX YYGBM ENNHT’
>>>

The first and last two groups of this message contain the indicators. Here we can see the system indicator was Y, the
external message indicator is GBMENN, and the key list indicator is HT.

An example session for decrypting the above message might look like:

>>> proc = StdProcedure()
>>> ct = ’YYGBM ENNHT VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX YYGBM ENNHT’
>>> params = proc.set_decrypt_message(ct)
>>> params
DecryptParams(sys_ind=’Y’, ext_msg_ind=’GBMENN’, key_list_ind=’HT’, ciphertext=’VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX’)
>>> key_list = read_key_list(’m209keys.cfg’, params.key_list_ind)
>>> proc.set_key_list(key_list)
>>> pt = proc.decrypt()
>>> pt
’ORDER THE PI A AT TWELVE HUNDRED HOURS ’
>>>

2.3. Library Reference 19

m209 Documentation, Release 0.1

20 Chapter 2. Documentation

CHAPTER

THREE

REQUIREMENTS

m209 is written in Python 3, specifically Python 3.3. At this time it will not run on Python 2.x.

m209 has no other requirements or dependencies.

21

http://www.python.org

m209 Documentation, Release 0.1

22 Chapter 3. Requirements

CHAPTER

FOUR

INSTALLATION

m209 is available on the Python Package Index (PyPI).

You can install it using pip:

$ pip install m209 # install
$ pip install --upgrade m209 # upgrade

You may also download an archive file of the latest code by visiting the m209 Bitbucket page. Alternatively if you use
Mercurial, you can clone the repository with the following command:

$ hg clone https://bitbucket.org/bgneal/m209

If you did not use pip (you downloaded or cloned the code yourself), you can install with:

$ cd where-you-extracted-m209
$ python setup.py install

To run the unit tests:

$ cd where-you-extracted-m209
$ python -m unittest discover -b

23

http://pypi.python.org/pypi/m209/
http://www.pip-installer.org
https://bitbucket.org/bgneal/m209
http://mercurial.selenic.com/

m209 Documentation, Release 0.1

24 Chapter 4. Installation

CHAPTER

FIVE

SUPPORT & SOURCE

All support takes place at the m209 Bitbucket page. Please enter any feature requests or bugs into the issue tracker.

25

https://bitbucket.org/bgneal/m209
https://bitbucket.org/bgneal/m209/issues

m209 Documentation, Release 0.1

26 Chapter 5. Support & Source

CHAPTER

SIX

REFERENCES

All of the resources listed below were useful to me in the creation of the m209 library. In particular, I want to thank
Mark J. Blair for his detailed explanations of the M-209’s operation and procedures. The official training film was also
highly instructive.

1. M-209 at Wikipedia

2. Mark J. Blair’s Converter M-209-B

3. 1942 M-209 Manual

4. 1944 M-209 Manual

5. Official M-209 Training Film - This is a 4 video YouTube playlist of an actual 1940’s era US War Department
training film. Demonstrates the M-209 and operational procedures. Very interesting!

6. Transcript of Training Film - Transcript of the above film.

7. Mark J. Blair’s M-209 Cipher Machine Group - Informal club for M-209 enthusiasts. Includes detailed expla-
nations of the device and how to use it. Very useful.

8. Dirk Rijmenants’ M-209 Simulator - Graphical M-209 simulator

9. Mark J. Blair’s Hagelin project suite at GitHub - M-209 simulator written in C++

10. Jean-François Bouchaudy’s Crypto Pages - Includes another Python-based M-209 simulator and a M-209 chal-
lenge. In French.

11. The C-38 / M-209 Cipher Machine - Another M-209 page. This one has useful info on creating key lists and a
C-38 simulator written in C.

27

http://en.wikipedia.org/wiki/M-209
http://www.nf6x.net/2009/02/converter-m-209-b/
http://maritime.org/tech/csp1500inst.htm
http://www.ilord.com/m209manual.html
http://www.youtube.com/playlist?list=PLCPgncK_sTnEny2-uoTV-1_GC72zo-vKq
http://www.ilord.com/m209-training.html
http://www.nf6x.net/groups/m209group/
http://users.telenet.be/d.rijmenants/en/m209sim.htm
https://github.com/NF6X/hagelin
http://www.jfbouch.fr/crypto/
http://hem.passagen.se/tan01/c38.html

m209 Documentation, Release 0.1

28 Chapter 6. References

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• search

29

	Introduction
	Documentation
	Tutorials
	Command-line Reference
	Library Reference

	Requirements
	Installation
	Support & Source
	References
	Indices and tables

