

 Navigation

 	
 index

 	
 next |

 	m209 0.1 documentation

Welcome to m209’s documentation!

	Author:	Brian Neal <bgneal@gmail.com>

	Version:	0.1

	Date:	July 23, 2013

	Home Page:	https://bitbucket.org/bgneal/m209/

	License:	MIT License (see LICENSE.txt)

	Documentation:	http://m209.readthedocs.org/

	Support:	https://bitbucket.org/bgneal/m209/issues

Introduction

The M-209 [http://en.wikipedia.org/wiki/M-209] is a mechanical cipher machine used by the US military during
World War II and up to the Korean War. The M-209 is also known as the CSP-1500
by the US Navy. The M-209 is an example of a Hagelin device, a family of
mechanical cipher machines created by Swedish inventor Boris Hagelin [http://en.wikipedia.org/wiki/Boris_Hagelin], where
it is known as the C-38.

m209 is a complete M-209 [http://en.wikipedia.org/wiki/M-209] simulation library and command-line application
written in Python 3. m209 is historically accurate, meaning that it can
exchange messages with an actual M-209 cipher machine.

It is hoped that this library will be useful to M-209 enthusiasts, historians,
and students interested in cryptography.

m209 strives to be Pythonic, easy to use, and comes with both unit tests
and documentation. m209 is a library for building applications for
encrypting and decrypting M-209 messages. m209 also ships with a simple
command-line application that can encrypt & decrypt messages for scripting and
experimentation.

Documentation

Contents:

	Tutorials
	Command-line Tutorial

	Library Tutorial

	Command-line Reference
	Overview

	Keygen sub-command

	Encrypt sub-command

	Decrypt sub-command

	Library Reference
	Exceptions

	Key lists

	M209 Class

	StdProcedure Class

Requirements

m209 is written in Python [http://www.python.org] 3, specifically Python 3.3. At this time it will
not run on Python 2.x.

m209 has no other requirements or dependencies.

Installation

m209 is available on the Python Package Index [http://pypi.python.org/pypi/m209/] (PyPI).

You can install it using pip [http://www.pip-installer.org]:

$ pip install m209 # install
$ pip install --upgrade m209 # upgrade

You may also download an archive file of the latest code by visiting the m209
Bitbucket page [https://bitbucket.org/bgneal/m209]. Alternatively if you use Mercurial [http://mercurial.selenic.com/], you can clone the
repository with the following command:

$ hg clone https://bitbucket.org/bgneal/m209

If you did not use pip (you downloaded or cloned the code yourself), you can
install with:

$ cd where-you-extracted-m209
$ python setup.py install

To run the unit tests:

$ cd where-you-extracted-m209
$ python -m unittest discover -b

Support & Source

All support takes place at the m209 Bitbucket page [https://bitbucket.org/bgneal/m209]. Please enter any
feature requests or bugs into the issue tracker [https://bitbucket.org/bgneal/m209/issues].

References

All of the resources listed below were useful to me in the creation of the
m209 library. In particular, I want to thank Mark J. Blair for his detailed
explanations of the M-209’s operation and procedures. The official training
film was also highly instructive.

	M-209 at Wikipedia [http://en.wikipedia.org/wiki/M-209]

	Mark J. Blair’s Converter M-209-B [http://www.nf6x.net/2009/02/converter-m-209-b/]

	1942 M-209 Manual [http://maritime.org/tech/csp1500inst.htm]

	1944 M-209 Manual [http://www.ilord.com/m209manual.html]

	Official M-209 Training Film [http://www.youtube.com/playlist?list=PLCPgncK_sTnEny2-uoTV-1_GC72zo-vKq] - This is a 4 video YouTube playlist of an actual 1940’s era US War Department training film. Demonstrates the M-209 and operational procedures. Very interesting!

	Transcript of Training Film [http://www.ilord.com/m209-training.html] -
Transcript of the above film.

	Mark J. Blair’s M-209 Cipher Machine Group [http://www.nf6x.net/groups/m209group/] -
Informal club for M-209 enthusiasts. Includes detailed explanations of the
device and how to use it. Very useful.

	Dirk Rijmenants’ M-209 Simulator [http://users.telenet.be/d.rijmenants/en/m209sim.htm] -
Graphical M-209 simulator

	Mark J. Blair’s Hagelin project suite at GitHub [https://github.com/NF6X/hagelin]
- M-209 simulator written in C++

	Jean-François Bouchaudy’s Crypto Pages [http://www.jfbouch.fr/crypto/]
- Includes another Python-based M-209 simulator and a M-209 challenge. In French.

	The C-38 / M-209 Cipher Machine [http://hem.passagen.se/tan01/c38.html]
- Another M-209 page. This one has useful info on creating key lists and a C-38 simulator written in C.

Indices and tables

	Index

	Search Page

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

Tutorials

Command-line Tutorial

In order for two parties to exchange M-209 messages, each must set up their
device in exactly the same manner. This was accomplished by publishing key
lists in code books which were distributed to end users. A code book instructed
users on what key list to use on any given day in a given month. Each key list
detailed the numerous wheel pin and lug settings that needed to be made for
a given day. Because there are so many settings, the m209 utility allows
users to store key lists in a key file for convenience. So let us first create
a key file that holds 30 key lists:

$ m209 keygen -n 30

This command randomly creates 30 key lists and stores them in a file called
m209keys.cfg by default. We did not specify a starting key list indicator, so
30 random ones were chosen. The first 13 lines of our new key file are
displayed below:

$ head -n 13 m209keys.cfg
[AB]
lugs = 0-4*4 0-5*6 1-0*10 2-0*2 3-0 3-5*2 3-6 4-5
wheel1 = BDFGIKRSTUWX
wheel2 = BCEJKLORSUX
wheel3 = CFHJKLMQSTU
wheel4 = ABCDHIJMOPRTU
wheel5 = BCEFINPS
wheel6 = ACDEHJN
check = GZWUU SFYQN NFAKK FXSEN FAFMF B

[AK]
lugs = 0-4*2 0-5*9 0-6 1-0*3 1-2 1-5 1-6*2 3-0*8
wheel1 = ABDEFHIJMQSUXZ

Note

If you are following along at home, you’ll probably get different
output than what is shown here. This is because the key lists are generated
at random, and it is very unlikely that your key list will match mine!

Here we can see that the first key list in our file has the indicator AB
(shown in square brackets), and we can see the settings for the lugs and six
wheels. This notation is explained later (see Key list file format).
Also included is a so-called check string. Because there are so many settings,
it is quite error-prone to set up an M-209. This check string allows the
operator to verify their work. After configuring the M-209 with the given
settings, the operator can set the six key wheels to AAAAAA, then encipher
the letter A 26 times. If the message that appears on the paper tape
matches the check string, the operator knows the machine is set up correctly
for the day.

After the key list AB, the key list AK starts, and so on for all 30 key
lists.

Now that we have created a key file, we can encrypt our first message. The
m209 utility has many options to let you have fine control over the various
encryption parameters. These are explained in detail later. If you omit these
parameters they are simply chosen at random. Here is the simplest example of
encrypting a message:

$ m209 encrypt -t "THE PIZZA HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP"
IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB

What just happened here? Since we did not specify a key file, the default
m209keys.cfg was used. Since we did not specify a key list indicator, one
was chosen randomly from the key file. Other encryption parameters, explained
later, were also randomly chosen. Next, the message given on the command-line
was encrypted using the standard US Army procedure described in
References (see [5] and [7]). This resulted in the encrypted
message, which is displayed in 5-letter groups. Notice that the first and last
2 groups are identical. These are special indicators that tell the receiver how
to decrypt the message. In particular note that the last 2 letters in the
second and last groups are MB. This is the key list indicator and tells
the receiver what key list was used. The remaining groups in the middle make
up the encrypted message.

Astute M-209 enthusiasts will note that our message included spaces. Actual
M-209 units only allow the input of the letters A through Z. Whenever
a space was needed, the operator inserted the letter Z. The m209
utility automatically performs this substitution for convenience.

Let’s suppose our message was then sent to our recipient, either by courier,
Morse code over radio, or in the modern age, email or even Twitter. In order
for our receiver to decrypt our message they must also have the identical key
list named MB. We will assume for now that our key file, m209keys.cfg
was sent to our receiver earlier in some secure manner. The receiver then
issues this command:

$ m209 decrypt -t "IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB"
THE PI A HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP

Here again, since no key file was explicitly specified, the file
m209keys.cfg was used. The file was searched for the key list MB. Then
the standard Army procedure was followed, making use of the indicator groups to
decrypt the message, which is displayed as output.

But wait, what happened to our Pizza? Why are the Z‘s missing? This is how
an actual M-209 operates. Recall that an operator must substitute a letter
Z whenever a space is needed. The M-209 helpfully replaces the letter Z
in the decrypt output with a space as an aid to the operator. As a side effect,
legitimate uses of the letter Z are blanked out. Usually it is clear from
context what has happened, and the operator has to put the Z‘s back into
the message before passing it up the chain of command.

It may also happen that the original message did not fit perfectly into an even
number of 5-letter groups. In that case the encrypted message would be padded
with X characters according to procedure. Upon decrypt, these X
characters would appear as garbage characters on the end of the message. The
receiving operator would simply ignore these letters. Note that our message did
not exhibit this behavior.

This is all you need to know to start creating your own M-209 messages! For
more details, consult the Command-line Reference.

Library Tutorial

Here is one way to perform the encrypt and decrypt operations from the
command-line tutorial, above. In order to produce the same output, we explicitly
specify the encryption parameters: the key list, the external message
indicator, and the system indicator. These parameters are explained in
References [5] & [7].

"""Example of how to perform an encrypt operation using the standard
procedure. Assumes a key file named m209keys.cfg exists in the current directory
and contains the key list with indicator MB.

"""
from m209.procedure import StdProcedure
from m209.keylist.config import read_key_list

key_list = read_key_list('m209keys.cfg', 'MB')
if key_list:
 proc = StdProcedure(key_list=key_list)
 plaintext = "THE PIZZA HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP"
 msg = proc.encrypt(plaintext, spaces=True, ext_msg_ind='PDUFHL', sys_ind='I')
 print(msg)
else:
 print("Key list MB not found")

This program outputs:

IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC GSPQX IIPDU FHLMB

A decrypt is just a bit more complicated. After constructing
a StdProcedure object, you hand it the encrypted
message to analyze. The procedure object examines the groups in the message and
extracts all the indicators. These are returned as a DecryptParams named
tuple which indicates, amongst other things, what key list is required. It is
then up to you to obtain this key list somehow. Here we use the
read_key_list() function to do so. After installing
the key list into the procedure object with set_key_list(),
you can finally call decrypt():

"""Example of how to perform a decrypt operation using the standard
procedure. Assumes a key file named m209keys.cfg exists in the current directory
and contains the key list with indicator MB.

"""
from m209.procedure import StdProcedure
from m209.keylist.config import read_key_list

msg = ('IIPDU FHLMB LASGD KTLDO OSRMZ PWGEB HYMCB IKSPT IUEPF FUHEO NQTWI VTDPC'
 ' GSPQX IIPDU FHLMB')

proc = StdProcedure()
params = proc.set_decrypt_message(msg)
key_list = read_key_list('m209keys.cfg', params.key_list_ind)
if key_list:
 proc.set_key_list(key_list)
 plaintext = proc.decrypt()
 print(plaintext)
else:
 print("Key list '{}' not found".format(params.key_list_ind))

This program prints:

THE PI A HAS ARRIVED STOP NO SIGN OF ENEMY FORCES STOP

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

Command-line Reference

Overview

The m209 command-line utility performs three functions:

	Creates key list files

	Encrypts text, either given on the command line or read from a file

	Decrypts text, either given on the command line or read from a file

These functions are implemented as sub-commands. To see the list of
sub-commands and options common to all sub-commands, use the -h or
--help option:

$ m209 --help
usage: m209 [-h] [-l {debug,info,warning,error,critical}]
 {encrypt,enc,decrypt,dec,keygen,key} ...

M-209 simulator and utility program

optional arguments:
 -h, --help show this help message and exit
 -l {debug,info,warning,error,critical}, --log {debug,info,warning,error,critical}
 set log level [default: warning]

list of commands:
 type m209 {command} -h for help on {command}

 {encrypt,enc,decrypt,dec,keygen,key}
 encrypt (enc) encrypt text from file or command-line
 decrypt (dec) decrypt text from file or command-line
 keygen (key) generate key list

The -l / --log options control the verbosity of output. Currently only
the keygen sub-command makes use of this option.

Each sub-command has an alias for those who prefer shorter commands.

Keygen sub-command

keygen, or key for short, is the sub-command that pseudo-randomly
creates key list files for use by the encrypt and decrypt sub-commands,
as well as by the m209 library routines.

Help on the keygen sub-command can be obtained with the following
invocation:

$ m209 keygen --help
usage: m209 keygen [-h] [-z KEY_FILE] [-o] [-s XX] [-n NUMBER]

Generate key list file

optional arguments:
 -h, --help show this help message and exit
 -z KEY_FILE, --key-file KEY_FILE
 path to key list file [default: m209keys.cfg]
 -o, --overwrite overwrite key list file if it exists
 -s XX, --start XX starting indicator; if omitted, random indicators are
 used
 -n NUMBER, --number NUMBER
 number of key lists to generate [default: 1]

The options for keygen are described below.

	-z or --key-file

	This option names the key list file. If not supplied, this defaults to
m209keys.cfg. Note that the other sub-commands also have this option,
and they too use the same default value.

	-o or --overwrite

	This switch must be present if the key list file already exists. It provides
confirmation that the user wants to overwrite an existing file. If the key
list file already exists, and this option is not supplied, this sub-command
will exit with an error message and the original key list file will be
unchanged.

	-s or --start

	This option sets the starting indicator for the key list file. Key list
indicators are two letters in the range AA to ZZ. For example,
keygen can be told to create 3 key lists, starting with indicator
AA. In this case the key lists AA, AB, and AC would be
written to the file. If this parameter is omitted, keygen picks
indicators at random. Key list indicators simply name the key list, and are
placed in the leading and trailing groups of encrypted messages to tell the
receiver which key list was used to create the message. Both sender and
receiver must have the same key list (name and contents) to communicate.

	-n or --number

	This option specifies the number of key lists to generate. The default value
is 1.

Note

The algorithm the keygen sub-command uses to generate key lists is based
on the actual US Army procedure taken from the 1944 manual. This procedure
is somewhat loosely specified and a lot is left up to the soldier creating
the key list. The keygen algorithm is ad-hoc and uses simple heuristics
and random numbers to make decisions. Occasionally this algorithm may fail
to generate a key list that meets the final criteria defined in the manual.
If this happens an error message will be displayed and no key list file will
be created. It is suggested to simply run the command again as it is not
likely to happen twice in a row.

Keygen examples

To generate 30 key lists in the default key list file (m209keys.cfg) with
random indicators, and overwriting the key list file if it exists:

$ m209 keygen -o -n 30
$ m209 key --overwrite --number=30

To generate 5 key lists that sequentially start with the indicator BN in
the key list file m209/keys/november/keys.cfg:

$ m209 keygen -z m209/keys/november/keys.cfg -s BN -n 5

Encrypt sub-command

encrypt, or enc, is the sub-command used to encrypt text. To get help
on the encrypt command, type the following:

$ m209 encrypt -h
usage: m209 encrypt [-h] [-z KEY_FILE] [-f FILE] [-t TEXT] [-k XX] [-e ABCDEF]
 [-s S]

Encrypt text from a file or command-line

optional arguments:
 -h, --help show this help message and exit
 -z KEY_FILE, --key-file KEY_FILE
 path to key list file [default: m209keys.cfg]
 -f FILE, --file FILE path to plaintext file or - for stdin
 -t TEXT, --text TEXT text string to encrypt
 -k XX, --key-list-ind XX
 2-letter key list indicator; if omitted a random one
 is used
 -e ABCDEF, --ext-ind ABCDEF
 6-letter external message indicator; if omitted a
 random one is used
 -s S, --sys-ind S 1-letter system indicator; if omitted a random one is
 used

Either the -f/--file or -t/--text arguments must be supplied

The options to the encrypt command are described below.

	-z or --key-file

	This option names the key list file. If not given, the default of
m209keys.cfg is used.

	-f or --file

	This option specifies the file that contains the text to encrypt. If the
filename is given as - then input is read directly from stdin. Note
that either this option or the -t option must be specified, but not
both.

	-t or --text

	This option specifies the text to encrypt on the command-line. Depending
upon your system, you’ll probably have to quote or escape your text. Note
that you must either specify this option or the -f option, but not both.

	-k or --key-list-ind

	This option specifies the two-letter key list indicator to use. Valid values
range from AA to ZZ. The key list with this indicator must be in the
key list file given by the -z option. If this option is omitted, a key
list from the key list file is chosen at random.

	-e or --ext-ind

	This option specifies the six-letter external message indicator, which is an
encryption parameter as explained in the 1944 manual (see
References [5] & [7]). Each letter must exist on the key wheels
from left to right. If this option is omitted, an external message indicator
is chosen at random.

	-s or --sys-ind

	This option specifies the one-letter system indicator, which is an
encryption parameter as explained in the 1944 manual (see
References [5] & [7]). This must be a letter from A to Z.
If not given, one is chosen at random.

Note

An actual M-209 can only accept the letters A-Z. When using an actual
M-209, space characters must be input as the letter Z. Numbers must
typically be spelled out as words or some other agreed-upon convention.
Likewise with punctuation. To make encryption more convenient, the m209
program will accept spaces and automatically convert them to the letter
Z. Lowercase letters will automatically be converted to uppercase. All
other characters will be silently dropped from the input. This applies to
both text read on the command-line with the -t option and text read from
files (-f).

Encrypt examples

To encrypt a simple string on the command-line using the default key file and
random encryption parameters:

$ m209 encrypt -t "Rendezvous at zero seven thirty"
BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY

To save the encrypted text to a file:

$ m209 encrypt -t "Rendezvous at zero seven thirty" > secret.txt

To read the contents of a file and encrypt it, saving it to a new file:

$ m209 enc -f message.txt > secret.txt

To explicitly specify encryption parameters, and read text from stdin:

$ cat message.txt | m209 enc --file=- -k SU -e ZQGMFO -s A

Decrypt sub-command

decrypt, or dec, is the sub-command used to decrypt text. To get help
on the decrypt command, type the following:

$ m209 decrypt --help
usage: m209 decrypt [-h] [-z KEY_FILE] [-f FILE] [-t TEXT]

Decrypt text from a file or command-line

optional arguments:
 -h, --help show this help message and exit
 -z KEY_FILE, --key-file KEY_FILE
 path to key list file [default: m209keys.cfg]
 -f FILE, --file FILE path to ciphertext file or - for stdin
 -t TEXT, --text TEXT text string to decrypt

Either the -f/--file or -t/--text arguments must be supplied

The options to the decrypt command are described below.

	-z or --key-file

	This option names the key list file. If not given, the default of
m209keys.cfg is used.

	-t or --file

	This option specifies the file that contains the text to decrypt. If the
filename is given as - then input is read directly from stdin. Note
that either this option or the -t option must be specified, but not
both.

	-t or --text

	This option specifies the text to decrypt on the command-line. Depending
upon your system, you’ll probably have to quote or escape your text. Note
that you must either specify this option or the -f option, but not both.

Note

The first and last 2 groups of an encrypted message contain the information
needed to decrypt the message: the system indicator, the external message
indicator, and the key list indicator. If the key list file given to the
decrypt command does not contain the key list used to encrypt the message,
then the message cannot be decrypted and an error message will be displayed.

Decrypt examples

To decrypt a simple string on the command-line using the default key file:

$ m209 decrypt -t "BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY"
RENDE VOUS AT ERO SEVEN THIRTYXSJQ

To save the decrypted text to a file:

$ m209 decrypt -t "BBEPH SSLBY RKHWO OBAJB VYQEQ NJHGV FWRCJ UZHMB PXXXX BBEPH SSLBY" > msg.txt

To read the contents of a file and decrypt it, saving it to a new file:

$ m209 dec -f secret.txt > msg.txt

To decrypt from stdin:

$ cat secret.txt | m209 dec -f -
RENDE VOUS AT ERO SEVEN THIRTYXSJQ

Note

In this example, the last group of the encrypted message only has one
letter. It was padded out to five letters with X‘s by the encryption
process, and thus four “garbage” letters appear at the end in the decrypted
output.

Note also that the Z in RENDEZVOUS and ZERO were converted to
spaces by the decrypt process.

In both of these cases the operator would have to “fix up” the message
before passing it up the chain of command.

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

Library Reference

This section of the documentation is aimed at developers who wish to use the
m209 library as part of their own application. This documentation covers
the major classes and functions.

	Exceptions

	Key lists
	Lug settings format

	Key wheel pin settings

	Key list example

	Key list file I/O

	Key list file format

	Generating key lists

	M209 Class

	StdProcedure Class

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

 	Library Reference

Exceptions

The m209 library defines an exception hierarchy, rooted at the
M209Error class. These exceptions are briefly described below.

	
class m209.M209Error

	The base exception in the hierarchy. It inherits from the built in
Python Exception class.

	
class m209.drum.DrumError

	Inherits from M209Error. This exception is used to report
drum related errors.

	
class m209.key_wheel.KeyWheelError

	Inherits from M209Error. This exception is used to report key
wheel related errors.

	
class m209.keylist.generate.KeyListGenError

	Inherits from M209Error. This is public exception, used
to report errors during the key list generation process.

	
class m209.procedure.ProcedureError

	Inherits from M209Error. This is public exception, used
to report errors during StdProcedure operations.

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

 	Library Reference

Key lists

Key lists are represented as a named tuple called KeyList.

	
class m209.keylist.KeyList(indicator, lugs, pin_list, letter_check)

	As a named tuple, KeyList has the following attributes:

	indicator - the string name for the KeyList; must be 2 letters in
the range AA - ZZ

	lugs - a string representing the drum lug settings; see below

	pin_list - a list of six strings which represent key wheel pin
settings; see below

	letter_check - a string representing the letter check used to verify
operator settings; if unknown this can be None or an empty string

Lug settings format

Drum lug settings are often conveniently represented as strings consisting of
at most 27 whitespace-separated pairs of integers separated by dashes. For
example:

lugs = '1-0 2-0 2-0 0-3 0-5 0-5 0-5 0-6 2-4 3-6'

Each integer pair must be in the form m-n where m & n are integers
between 0 and 6, inclusive. Each integer represents a lug position where
0 is a neutral position, and 1-6 correspond to key wheel positions. If
m & n are both non-zero, they cannot be equal.

If a string has less than 27 pairs, it is assumed all remaining bars have both
lugs in the neutral positions, i.e. 0-0.

The order of the pairs within the string does not matter.

To reduce typing and to aid in readability, an alternate shortcut notation is
supported:

lugs = '1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6'

Any pair that is suffixed by *k, where k is a positive integer, means there
are k copies of the preceeding lug pair combination. For example, these two
strings describe identical drum configurations:

lugs1 = '2-4 2-4 2-4 0-1 0-1'
lugs2 = '2-4*3 0-1*2'

Key wheel pin settings

Key wheel pin settings are represented as iterables of letters whose pins are
slid to the “effective” position (to the right). Letters not appearing in this
sequence are considered to be in the “ineffective” position (to the left). If
None or empty, all pins are set to be ineffective.

Examples:

all_ineffective = ''
wheel1 = 'ABDEFHIJMQSUXZ'
wheel2 = 'EINPQRTVXZ'
wheel3 = 'DEFGIKNOSUX'
wheel4 = 'BFGJKRS'
wheel5 = 'ABCDFGHIJMPS'
wheel6 = 'ADEFHIJKN'

Key list example

An example of using the KeyList is:

from m209.keylist import KeyList

key_list1 = KeyList(
 indicator='AA',
 lugs='0-4 0-5*4 0-6*6 1-0*5 1-2 1-5*4 3-0*3 3-4 3-6 5-6',
 pin_list=[
 'FGIKOPRSUVWYZ',
 'DFGKLMOTUY',
 'ADEFGIORTUVX',
 'ACFGHILMRSU',
 'BCDEFJKLPS',
 'EFGHIJLMNP'
],
 letter_check='QLRRN TPTFU TRPTN MWQTV JLIJE J')

Key list file I/O

Key lists can be stored in files in config file (“INI”) style format using
functions found in the m209.keylist.config module.

	
m209.keylist.config.read_key_list(fname[, indicator=None])

	Reads key list information from the file given by fname.

Searches the config file for the key list with the given indicator. If
found, returns a KeyList object. Returns None if
not found.

If indicator is None, a key list is chosen from the file at random.

	
m209.keylist.config.write(fname, key_lists)

	Writes the key lists to the file named fname in config file format.

key_lists must be an iterable of KeyList objects.

Key list file format

An example key list file in config file format is presented below. The label
for each section of the file is the key list indicator.

[CA]
lugs = 0-5*5 0-6*2 1-0*7 1-2 1-3*3 1-6 2-0 3-0*3 3-5*2 3-6 4-5
wheel1 = ABCDFGHJLOPRVWYZ
wheel2 = BCDEIJKPQSUVX
wheel3 = ACDGLNQRSTUV
wheel4 = FGHIJNQRSU
wheel5 = DEIJOQS
wheel6 = BCDEILMNOP
check = RGPRO RTYOO TWYSN GXTPF PNWIH P

[CD]
lugs = 0-4*4 0-5 1-0*7 1-2*2 1-4*3 2-0*2 2-4*2 2-6*2 3-0*4
wheel1 = AEFHIKMPQRSUVZ
wheel2 = ABFGHINORSUVZ
wheel3 = BDEHJKLMNOQRSU
wheel4 = CDEFGHJKMRU
wheel5 = FGHIJOQS
wheel6 = EGIJKLP
check = ZRLWL YRMIZ RZOPN UWMVZ DVGPM H

Generating key lists

The m209 library contains a function to pseudo-randomly generate a key list
that is based on the procedure described in the 1944 M-209 manual
(see References [4]).

	
m209.keylist.generate.generate_key_list(indicator[, lug_selection=None[, max_lug_attempts=MAX_LUG_ATTEMPTS[, max_pin_attempts=MAX_PIN_ATTEMPTS]]])

	The only required parameter is indicator, the two-letter indicator for
the key list.

If successful, a KeyList object is returned.

If a KeyList could not be generated
a KeyListGenError exception is raised.

The algorithm is heuristic-based and makes random decisions based upon the
1944 procedure. The actual procedure is loosely specified in the manual, and
much is left up to the human operator. It is possible that the algorithm
cannot find a solution to meet the key list requirements specified in the
manual, in which case it simply tries again up to some set of limits. These
limits can be tweaked using the optional parameters to the algorithm. If no
solution is found after exhausting the limits, a KeyListGenError is
raised.

The optional parameters are:

	lug_selection - a list of 6 integers used to drive the lug settings
portion of the algorithm. If not supplied, a list of 6 integers is chosen
from data tables that appear in the 1944 manual. For more information on
the requirements for these integers, see the manual.

	max_lug_attempts - the maximum number of times to attempt to create
lug settings before giving up

	max_pin_attempts - the maximum number of times to attempt to generate
key wheel pin settings before giving up

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	m209 0.1 documentation

 	Library Reference

M209 Class

Naturally, the m209 library includes a class that simulates a M-209
converter. The M209 class allows you to experiment
with all moving parts of an M-209, including encrypting and decrypting
messages. Keep in mind there is a higher level class,
StdProcedure, that encapsulates all the steps of the
standard encrypting and decrypting operations, including generating indicators
and placing or removing them from messages. However if you need lower-level
access or you are inventing your own procedures, you would use the M209 class
directly.

	
class m209.converter.M209([lugs=None[, pin_list=None]])

	
The M209 class takes the following optional arguments.

	Parameters:	
	lugs – either a lug settings list or string as per set_drum_lugs()

	pin_list – a list of six strings each formatted as per Key wheel pin settings

M209 objects have the following attributes.

	
letter_count

	This attribute represents the letter counter functionality. It is an
integer that is incremented after every letter is encrypted or decrypted.
It may be set to any integer value or examined at any time.

M209 objects support the following methods.

	
set_pins(n, effective_pins)

	Sets the pin settings on the specified key wheel n.

	Parameters:	
	n – an integer between 0-5, inclusive. Key wheel 0 is the
left-most wheel and wheel 5 is the right-most.

	effective_pins – an iterable of letters whose pins are slid to
the “effective” position (to the right). See Key wheel pin settings.

	
set_all_pins(pin_list)

	Sets all key wheel pins according to the supplied pin list.

	Parameters:	pin_list – must either be None or a 6-element list of strings
where each string element is as described in Key wheel pin settings.
If None, all pins in all key wheels are moved to the ineffective position.

	
set_drum_lugs(lug_list)

	Sets the drum lugs according to the given lug_list parameter.

If lug_list is None or empty, all lugs will be placed in neutral
positions.

Otherwise, the lug_list can either be a list or a string.

If lug_list is passed a list, it must be a list of 1 or 2-tuple integers,
where each integer is between 0-5, inclusive, and represents a 0-based
key wheel position. The list can not be longer than 27 items. Only lug
bars with lugs in non-neutral positions need be listed. Lug bars with one
lug in a non-neutral position are represented by a 1-tuple. Bars with
2 non-netural lugs are represented as a 2-tuple.

If lug_list is passed as a string, it is assumed to be in key list
format as described in Lug settings format.

Example:

m = M209()
m.set_drum_lugs('1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6')

or equivalently
m.set_drum_lugs([(0,), (1,), (1,), (2,), (4,), (4,), (4,), (5,), (1, 3), (2, 5)])

	
set_key_wheel(n, c)

	Set key wheel n to the letter c.

	Parameters:	
	n – an integer between 0-5 where key wheel 0 is the leftmost key wheel,
and 5 is the rightmost

	c – a 1-letter string valid for key wheel n

	Raises KeyWheelError:

		if c is not valid for wheel n

	
set_key_wheels(s)

	Set the key wheels from left to right to the six letter string s.

	Raises KeyWheelError:

		if any letter in s is not valid for the corresponding key wheel

	
set_random_key_wheels()

	Sets the six key wheels to random letters.

	Returns:	a string of length six representing the new key wheel settings

	
get_settings()

	Returns the current key settings.

	Returns:	a named tuple of (lugs, pin_list) representing the current
key settings. lugs will be in string format.

	
encrypt(plaintext[, group=True[, spaces=True]])

	Performs an encrypt operation on the given plaintext and returns the
encrypted ciphertext as a string.

	Parameters:	
	plaintext – the text string to encrypt

	group – if True, the ciphertext string will be grouped into 5-letter
groups, separated by spaces

	spaces – if True, space characters in the input plaintext will
automatically be treated as Z characters. Otherwise spaces in the
plaintext will raise an M209Error.

	Returns:	the ciphertext as a string

	
decrypt(ciphertext[, spaces=True[, z_sub=True]])

	Performs a decrypt operation on the given ciphertext and returns the
decrypted plaintext as a string.

	Parameters:	
	ciphertext – the text string to decyrpt

	spaces – if True, spaces will be allowed in the input ciphertext and
ignored. Otherwise space characters will raise an M209Error.
This is useful if the input ciphertext is in 5-letter groups, separated
by spaces.

	z_sub – if True, Z characters in the output plaintext will be
replaced by space characters, just like an actual M-209.

	Returns:	the plaintext as a string

Example:

>>> from m209.converter import M209
>>> m = M209()
>>> m.set_drum_lugs('1-0 2-0*2 0-3 0-5*3 0-6 2-4 3-6')
>>> pin_list = [
... 'FGIKOPRSUVWYZ',
... 'DFGKLMOTUY',
... 'ADEFGIORTUVX',
... 'ACFGHILMRSU',
... 'BCDEFJKLPS',
... 'EFGHIJLMNP'
...]
>>> m.set_all_pins(pin_list)
>>> m.set_key_wheels('FFEGJP')
>>> ct = m.encrypt('THE PIZZA HAS ARRIVED')
>>> ct
'QBCHU WCCDI YFNCH LOZJY G'
>>> m.set_key_wheels('FFEGJP')
>>> pt = m.decrypt(ct)
>>> pt
'THE PI A HAS ARRIVED'

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	m209 0.1 documentation

 	Library Reference

StdProcedure Class

The StdProcedure class encapsulates the encrypting and decrypting
procedures outlined in References. In particular, see
references [5] and [7]. This class takes care of the high level details of
inserting various message indicators into an encrypted message, and stripping
them off during decrypt. These message indicators tell the recipient what key
list and initial key wheel settings to use when configuring their M-209 for
decrypt.

	
class m209.procedure.StdProcedure([m_209=None[, key_list=None]])

	

	Parameters:	
	m_209 – an instance of a M209 can optionally be
provided to the procedure object. If None the procedure object
will create one for internal use.

	key_list – an instance of a KeyList can be
provided if known ahead of time. Before an encrypt or decrypt operation
can be performed, a key list must be provided. This can be done after
object creation via set_key_list(). Note that the letter_check
attribute of the KeyList is not accessed by the
procedure object, and can be None if not known.

Before an encrypt() operation can be performed, a valid key list must be
installed, either during procedure object construction, or by the
set_key_list() method.

Decrypt operations are performed in a 3-step process.

	First, a call to the set_decrypt_message() method passes the message
to be decrypted to the procedure and establishes the parameters to be used
for the actual decrypt() operation. These decrypt parameters are
returned to the caller.

	The caller can examine the decrypt parameters to determine which key list
must be installed before a successful decrypt() operation can be
carried out. The caller may call get_key_list() to examine the
currently installed key list. It is up to the caller to obtain the required
key list and install it with set_key_list(), if necessary. This is
done by ensuring the installed key list indicator matches the
key_list_ind field of the decrypt parameters.

	Finally decrypt() can be called. If the procedure does not have the
key list necessary to decrypt the message, a ProcedureError is
raised.

StdProcedure objects have the following methods:

	
get_key_list()

	

	Returns:	the currently installed KeyList object
or None if one has not been set

	
set_key_list(key_list)

	Establishes the KeyList to be used for future
encrypt() and decrypt() operations

	Parameters:	key_list – the new KeyList to use

	
encrypt(plaintext[, spaces=True[, ext_msg_ind=None[, sys_ind=None]]])

	Encrypts a plaintext message using the installed
KeyList and by following the standard procedure.
The encrypted text with the required message indicators are returned as
a string.

	Parameters:	
	plaintext – the input string to be encrypted

	spaces – if True, space characters in the input plaintext are
allowed and will be replaced with Z characters before encrypting

	ext_msg_ind – this is the external message indicator, which, if
supplied, must be a valid 6-letter string of key wheel settings. If not
supplied, one will be generated randomly.

	sys_ind – this is the system indicator, which must be a string of length
1 in the range A - Z, inclusive. If None, one is chosen at random.

	Returns:	the encrypted text with the required message indicators

	Raises ProcedureError:

		if the procedure does not have
a KeyList or the input indicators are invalid

	
set_decrypt_message(msg)

	Prepare to decrypt the supplied message.

	Parameters:	msg – the messsage to decrypt. The message can be grouped into
5-letter groups separated by spaces or accepted without spaces.

	Returns:	a DecryptParams named tuple to the caller (see below)

The DecryptParams named tuple has the following attributes:

	sys_ind - the system indicator

	ext_msg_ind - the external message indicator

	key_list_ind - the key list indicator

	ciphertext - the cipher text with all indicators removed

The caller should ensure the procedure instance has the required
KeyList before calling decrypt(). The
key_list_ind attribute of the returned DecryptParams named tuple
identifies the key list that should be installed with
set_key_list().

	
decrypt()

	Decrypt the message set in a previous set_decrypt_message() call. The
resulting plaintext is returned as a string.

	Returns:	the decrypted plaintext as a string

	Raises ProcedureError:

		if the procedure instance has not been
previously configured with the required KeyList
via set_key_list()

Here is a simple interactive example of performing an encrypt operation. Here
we choose a random key list from our key list file, and use random indicators:

>>> from m209.keylist.config import read_key_list
>>> from m209.procedure import StdProcedure
>>>
>>> key_list = read_key_list('m209keys.cfg')
>>> proc = StdProcedure(key_list=key_list)
>>> ct = proc.encrypt('ORDER THE PIZZA AT TWELVE HUNDRED HOURS')
>>> ct
'YYGBM ENNHT VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX YYGBM ENNHT'
>>>

The first and last two groups of this message contain the indicators. Here we
can see the system indicator was Y, the external message indicator is
GBMENN, and the key list indicator is HT.

An example session for decrypting the above message might look like:

>>> proc = StdProcedure()
>>> ct = 'YYGBM ENNHT VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX YYGBM ENNHT'
>>> params = proc.set_decrypt_message(ct)
>>> params
DecryptParams(sys_ind='Y', ext_msg_ind='GBMENN', key_list_ind='HT', ciphertext='VBMTJ PEEFV JWLUU PAFTS VOHEA QEPEQ OKVUA XDAUX')
>>> key_list = read_key_list('m209keys.cfg', params.key_list_ind)
>>> proc.set_key_list(key_list)
>>> pt = proc.decrypt()
>>> pt
'ORDER THE PI A AT TWELVE HUNDRED HOURS '
>>>

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	m209 0.1 documentation

Index

 D
 | E
 | G
 | L
 | M
 | S

D

 	

 	decrypt()

E

 	

 	encrypt()

G

 	

 	get_key_list()

 	

 	get_settings()

L

 	

 	letter_count

M

 	

 	m209.converter.M209 (built-in class)

 	m209.drum.DrumError (built-in class)

 	m209.key_wheel.KeyWheelError (built-in class)

 	m209.keylist.config.read_key_list() (built-in function)

 	m209.keylist.config.write() (built-in function)

 	m209.keylist.generate.generate_key_list() (built-in function)

 	

 	m209.keylist.generate.KeyListGenError (built-in class)

 	m209.keylist.KeyList (built-in class)

 	m209.M209Error (built-in class)

 	m209.procedure.ProcedureError (built-in class)

 	m209.procedure.StdProcedure (built-in class)

S

 	

 	set_all_pins()

 	set_decrypt_message()

 	set_drum_lugs()

 	set_key_list()

 	

 	set_key_wheel()

 	set_key_wheels()

 	set_pins()

 	set_random_key_wheels()

 Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		m209 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Brian Neal.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

